



#### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

#### **QUESTION BANK (DESCRIPTIVE)**

**Subject with Code:** Foundation Engineering (18CE0133) **Course & Branch**: B.Tech - CE

Year & Sem: III-B.Tech & II-Sem Regulation: R18

# UNIT –I EARTH PRESSURE THEORIES & RETAINING WALLS

| 1  | a     | Write short notes on plastic equilibrium in soils.                                                            | [L1][CO1] | [2M]    |
|----|-------|---------------------------------------------------------------------------------------------------------------|-----------|---------|
|    | b     | Write short notes on variation of pressure with neat sketch.                                                  | [L1][CO1] | [2M]    |
|    | c     | List out various assumptions of coulomb's wedge theory.                                                       | [L1][CO1] | [2M]    |
|    | d     | Write short notes on Rehbann's construction for active pressure.                                              | [L1][CO1] | [2M]    |
|    | e     | Write short notes on Retaining walls.                                                                         | [L1][CO2] | [2M]    |
| 2  |       | ne earth pressure theory and various types of lateral earth pressure with neat sketch.                        | [L2][CO1] | [10M]   |
| 3  |       | rmine the lateral earth pressure at rest per unit length of wall as shown in fig. Also                        | [L3][CO1] | [10M]   |
|    |       | rmine the resultant earth pressure. Take $K_0=1-Sin\phi'$ , $\gamma_w=10kN/m^3$ .                             | [20][001] | [101/1] |
|    |       | φ'=30°  ∀=17 kN/m³  φ'=30°  γ=19 kN/m³  2m  2m  2m                                                            |           |         |
| 4  | Wha   | t are the assumptions of earth pressure theory and derive an expression for Rankines                          | [L2][CO1] | [10M]   |
|    |       | n pressure in cohesive soils.                                                                                 | . 11 1    | []      |
| 5  |       | ve expression for coulomb's wedge theory for active pressure with neat sketch.                                | [L3][CO1] | [10M]   |
| 6  |       | uss culmann's method for the determination of active earth pressure.                                          | [L3][CO1] | [10M]   |
| 7  | Dete  | ermine the active pressure on the retaining wall as shown in fig. Take $\gamma_w=10kN/m^3$ .                  | [L3][CO1] | [10M]   |
|    |       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                        |           |         |
| 8  | Expl  | ain various types of retaining walls with neat sketch.                                                        | [L2][CO2] | [10M]   |
| 9  |       | the help of neat sketch explain design of gravity retaining walls.                                            | [L2][CO2] | [10M]   |
| 10 | Expl  | ain various requirements of stability analysis of Gravity retaining walls.                                    | [L2][CO2] | [10M]   |
| 11 | A ca  | antilever retaining wall of 7mts height retains sand. The properties of sand are                              | [L3][CO1] | [10M]   |
|    | e=0.  | 5,φ=30° and G=2.7m.Using Rankines theory Determine the active earth pressure at                               |           |         |
|    | the l | base when the backfill is (i) dry (ii) saturated (iii)submerged and also the resultant re force in each case. |           |         |



### UNIT –II SHALLOW FOUNDATIONS & SETTLEMENTS

| 1  | a   | Define Net ultimate bearing capacity                                                            | [L1][CO3] | [2M]           |
|----|-----|-------------------------------------------------------------------------------------------------|-----------|----------------|
|    | b   | Write short notes on limitations of plate load test.                                            | [L1][CO3] | [2M]           |
|    | c   | Define Safe bearing capacity                                                                    | [L1][CO3] | [2M]           |
|    | d   | Write short notes on Tolerable settlement.                                                      | [L1][CO3] | [2M]           |
|    | e   | Define Net allowable bearing pressure                                                           | [L1][CO3] | [2M]           |
| 2  | W   | hat are different types of shallow foundations? Explain with the help of neat                   | [L2][CO3] | [10 <b>M</b> ] |
|    | ske | etches.                                                                                         |           |                |
| 3  | (a) | With neat sketches explain different types of shear failures.                                   | [L2][CO3] | [5 <b>M</b> ]  |
|    | (b) | Determine the ultimate bearing capacity of a strip footing, 1.20 m wide, and                    |           |                |
|    | ha  | ving the depth of foundation of 1.0 m. use Terzaghi's theory and assume general                 |           |                |
|    | she | ear failure. Take $\phi=35^{\circ},\ \gamma=18\ kN/m^3,\ and\ C'=15\ kN/m^2.$ Take $(N_c=57.8,$ | [L3][CO3] | [5 <b>M</b> ]  |
|    | Νγ  | v=42.4, Nq=41.4)                                                                                |           |                |
| 4  | Di  | scuss effect of water table on the bearing capacity of the soil with neat sketch?               | [L2][CO3] | [10M]          |
| 5  | a)  | List out various parameters for choice of type of foundation.                                   | [L1][CO3] | [5 <b>M</b> ]  |
|    | b)  | Write various points to consider for fixing depth of foundation.                                | [L1][CO3] | [5 <b>M</b> ]  |
| 6  | A   | strip footing of 2m width is founded at a depth of 4m below the ground surface.                 | [L3][CO3] | [10M]          |
|    | De  | etermine the net ultimate bearing capacity, using a) Terzaghi's equation ( $N_c=5.7$ ,          |           |                |
|    | Νγ  | v=1.0, Nq=0.0) b) Skempton's equation c) IS Code (N <sub>c</sub> =5.14). The soil is clay       |           |                |
|    | (φ  | $=0^{0}$ , C- $10$ kN/m <sup>2</sup> ). The unit weight of soil is $20$ kN/m <sup>2</sup> .     |           |                |
| 7  | De  | escribe how the plate load test is conducted with a neat sketch?                                | [L2][CO3] | [10M]          |
| 8  | W   | hat are different types of settlements that occur in a foundation?                              | [L2][CO3] | [10M]          |
| 9  | Di  | scuss the various methods of determination of allowable soil pressure in cohesion               | [L2][CO3] | [10M]          |
|    |     | s soils?                                                                                        |           |                |
| 10 | Di  | scuss the various methods of determination of allowable soil pressure in cohesion               | [L2][CO3] | [10M]          |
|    | so  | ils?                                                                                            |           |                |
| 11 |     | Determine the ultimate bearing capacity of a square footing, resting on the surface             | [L3][CO3] | [5M]           |
|    |     | saturated clay of unconfined compressive strength of 98kN/m <sup>2</sup> .                      |           |                |
|    |     | A rectangular footing (3 m X 2 m) exerts a pressure of 100 kN/m <sup>2</sup> on a cohesive      | [L3][CO3] | [5M]           |
|    |     | il ( $E_s = 5x10^4$ and $\mu = 0.50$ ). Determine the immediate settlement at the centre,       |           |                |
|    | ass | suming a) Footing is flexible b) Footing is rigid.                                              |           |                |



#### UNIT –III PILE FOUNDATIONS

| 1 | a                                                                                                           | Write short notes on piles.                                                              | [L1][CO4] | [2M]          |
|---|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------|---------------|
|   | b                                                                                                           | Define negative skin friction.                                                           | [L1][CO4] | [2M]          |
|   | c                                                                                                           | Write short notes on (a) Displacement piles (b) Non Displacement piles                   | [L1][CO4] | [2M]          |
|   | d                                                                                                           | What are under reamed piles?                                                             | [L1][CO4] | [2M]          |
|   | e                                                                                                           | Define allowable load.                                                                   | [L1][CO4] | [2M]          |
| 2 | Def                                                                                                         | ne pile foundation? Detail about necessity of pile foundation?                           | [L1][CO4] | [10M]         |
| 3 | List                                                                                                        | out various classifications of pile foundations. Discuss different methods for           | [L2][CO4] | [10M]         |
|   | insta                                                                                                       | allation of piles                                                                        |           |               |
| 4 | Hov                                                                                                         | would you estimate the load carrying capacity of a pile in (a) cohesion less soils       | [L2][CO4] | [10M]         |
|   | (b) (                                                                                                       | cohesive soils by using static methods?                                                  |           |               |
| 5 | Hov                                                                                                         | would you estimate the load carrying capacity of a pile by using dynamic                 | [L2][CO4] | [10M]         |
|   |                                                                                                             | nulae?                                                                                   |           |               |
|   |                                                                                                             | lain in detail In-situ penetration tests for pile capacity.                              | [L1][CO4] | [10M]         |
| 7 |                                                                                                             | A 30cm diameter concrete pile is driven into a homogeneous consolidated clay             |           | [5 <b>M</b> ] |
|   | deposit ( $c_u$ =40kN/m <sup>2</sup> , $\alpha$ =0.7).If the embedded length is 10m, estimate the safe load |                                                                                          |           |               |
|   | ,                                                                                                           | S. =2.5).                                                                                |           |               |
|   |                                                                                                             | A square concrete pile (30cm side) 10 m long is driven into coarse sand ( $\gamma$ =18.5 | [L2][CO4] | [5M]          |
|   |                                                                                                             | $/m^3$ , N=2.0). Determine the allowable load (F.S. =3.0).                               |           |               |
|   |                                                                                                             | would you estimate the group action of piles in (a) sand (b) clay?                       | [L2][CO4] | [10M]         |
|   |                                                                                                             | cribe how the pile load test is conducted with a neat sketch?                            | [L2][CO4] | [10M]         |
|   | _                                                                                                           | lain settlement of pile groups in (a) cohesion less soils (b) cohesive soils.            | [L2][CO4] | [10M]         |
|   | _                                                                                                           | ecast concrete pile (35cm x 35cm) is driven by a single –acting steam hammer.            | [L3][CO4] | [10M]         |
|   |                                                                                                             | mate the allowable load using (a) Engineering News Record Formula (F.S.=6)               |           |               |
|   |                                                                                                             | filey Formula (F.S.=4) and (c) Danish Formula (F.S. =4).                                 |           |               |
|   |                                                                                                             | the following data.                                                                      |           |               |
|   |                                                                                                             | (i) Maximum rated Energy = 3500kN-m                                                      |           |               |
|   |                                                                                                             | (ii) Weight of hammer $= 35kN$                                                           |           |               |
|   |                                                                                                             | (iii) Length of pile = 15m                                                               |           |               |
|   |                                                                                                             | (iv) Efficiency of hammer $= 0.8$                                                        |           |               |
|   |                                                                                                             | (v) Coefficient of resistitution = 0.5                                                   |           |               |
|   |                                                                                                             | (vi) Weight of pile cap = 3kN                                                            |           |               |
|   |                                                                                                             | (vii) No of blows for last 2.54mm = 6                                                    |           |               |
|   | (viii) Modulus of elasticity of concrete $= 2 \times 10^7 \text{ kN/m}^2$                                   |                                                                                          |           |               |
|   | (ix) Assume any other data, if required. Take the weight of pile as 73.5kN.                                 |                                                                                          |           |               |
|   |                                                                                                             |                                                                                          |           |               |



## UNIT –IV WELL FOUNDATIONS & CAISSON FOUNDATION

| 1  | a                                                                                  | Write short notes on Well foundation.                                                | [L1][CO5] | [2M]  |
|----|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|-------|
|    | b                                                                                  | Write short notes on Grip Length.                                                    | [L1][CO5] | [2M]  |
|    | c                                                                                  | List out various components of Well foundations.                                     | [L1][CO5] | [2M]  |
|    | d                                                                                  | Write short notes on caisson foundation.                                             | [L1][CO5] | [2M]  |
|    | e                                                                                  | List out various types of Caisson.                                                   | [L1][CO5] | [2M]  |
| 2  | Explain different shapes of wells with neat sketch.                                |                                                                                      | [L1][CO5] | [10M] |
| 3  | Discuss various forces acting on well foundation.                                  |                                                                                      |           | [10M] |
| 4  | What are the various components of well foundations? What are its uses?            |                                                                                      |           | [10M] |
| 5  | Explain various steps involved in sinking operation of wells with neat sketch.     |                                                                                      |           | [10M] |
| 6  | Explain various measures for rectification of Tilts and Shifts with neat sketch.   |                                                                                      |           | [10M] |
| 7  | Explain the construction of open caisson with the help of neat sketch.             |                                                                                      |           | [10M] |
| 8  | Describe the various components of pneumatic caisson with the help of neat sketch. |                                                                                      |           | [10M] |
| 9  | Explain the construction of Floating caisson with the help of neat sketch.         |                                                                                      |           | [10M] |
| 10 | Wh                                                                                 | at are the advantages and disadvantages of pneumatic caisson over open caisson?      | [L1][CO5] | [10M] |
| 11 | Wh                                                                                 | at are the advantages and disadvantages of Floating caisson and discuss stability of | [L1][CO5] | [10M] |
|    | floating caisson during flotation?                                                 |                                                                                      |           |       |

### UNIT –V MACHINE FOUNDATIONS

| 1  | a Write short notes on Machine foundations.                                                                                 | [L1][CO6]    | [2M]             |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
|    | b Define (i)Free vibration (ii) Forced vibration                                                                            | [L1][CO6]    | [2M]             |
|    | c Write short notes on Frequency.                                                                                           | [L1][CO6]    | [2M]             |
|    | d Write short notes weight of foundation.                                                                                   | [L1][CO6]    | [2M]             |
|    | e Write short notes on Degree of freedom.                                                                                   | [L1][CO6]    | [2M]             |
| 2  | Define Machine Foundation and types of machine foundations with neat sketch and                                             | [L1][CO6]    | [10M]            |
|    | list its suitability.                                                                                                       |              |                  |
| 3  | Explain general criteria for design of machine foundations.                                                                 | [L2][CO6]    | [10M]            |
| 4  | Explain design criteria of foundation in case of free undamped vibrations.                                                  | [L3][CO6]    | [10M]            |
|    |                                                                                                                             |              |                  |
| 5  | Explain in detail vibration analysis of machine foundation and determine mass                                               | [L2][CO6]    | [10M]            |
|    | (m) parameter.                                                                                                              |              |                  |
| 6  | Derive various methods used to determine spring stiffness(k) parameter in vibration                                         | [L2][CO6]    | [10M]            |
|    | analysis of machine foundation                                                                                              |              |                  |
|    | Explain in detail the determination of natural frequency by using theory of vibrations.                                     | [L2][CO6]    | [10M]            |
|    | a) The exciting force of a machine is 100kN.Determine the transmitted force if the                                          | [L3][CO6]    | [5 <b>M</b> ]    |
|    | natural frequency of the machine foundation is 3.0Hz.Take D=0.40 and the operating                                          |              |                  |
|    | frequency as 5Hz.                                                                                                           |              |                  |
|    | b) A 2.50Mg vertical compressor foundation system is operated at 40Hz. The soil at the                                      | [L3][CO6]    | [5 <b>M</b> ]    |
|    | site is medium stiff clay (C <sub>u</sub> =4 x 10 <sup>4</sup> kN/m <sup>3</sup> ). Determine the natural frequency and the |              |                  |
|    | magnification factor, assuming m <sub>s</sub> =0.2m <sub>f</sub> . The base area is 2.5m <sup>2</sup> . Take D=0.           |              |                  |
| 9  | a) Determine the natural frequency of a machine foundation having a base area 2m x                                          | [L3][CO6]    | [5M]             |
|    | 2m and a mass of 15Mg, including the mass of the machine. Taking $C_u=4 \times 10^4 \text{ kN/m}^2$ .                       | ET 011 CO 61 | r <b>en</b> (1)  |
|    | b) The natural frequency of a machine foundation is 4 hertz. Determine its                                                  | [L3][CO6]    | [5M]             |
|    | magnification at the operating frequency of 8 hertz. Take damping factor (D) as 0.30.                                       | [[ 2][000]   | [40 <b>]</b> [7] |
| 10 | A foundation block of weight 30kN rests on a soil for which the stiffness may be                                            | [L3][CO6]    | [10M]            |
|    | assumed as 25000kN/m. The machine is vibrated vertically by an exciting force of 3.0                                        |              |                  |
|    | sin (30t) kN. Find the natural frequency, natural period, natural circular frequency and                                    |              |                  |
|    | the amplitude of vertical displacement. The damping factor is 0.50.                                                         | [[ 0][000]   | r#3 #3           |
|    | a) Explain reinforcement and construction details of machine foundations.                                                   | [L2][CO6]    | [5M]             |
|    | b) List out various measures adopted for vibration isolation and control.                                                   | [L1][CO6]    | [5 <b>M</b> ]    |

Prepared by: Mrs. K.ASHALATHA Asst Professor/CE